Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 67: 102923, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832398

RESUMO

As the predominant immunosuppressive component within the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) inhibit Natural Killer cell (NK cell) activity to promote tumor progression and immune escape; however, the mechanisms of cross-talk between CAFs and NK cells in gastric cancer (GC) remain poorly understood. In this study, we demonstrate that NK cell levels are inversely correlated with CAFs abundance in human GC. CAFs impair the anti-tumor capacity of NK cells by inducing ferroptosis, a cell death process characterized by the accumulation of iron-dependent lipid peroxides. CAFs induce ferroptosis in NK cells by promoting iron overload; conversely, decreased intracellular iron levels protect NK cells against CAF-induced ferroptosis. Mechanistically, CAFs increase the labile iron pool within NK cells via iron export into the TME, which is mediated by the upregulated expression of iron regulatory genes ferroportin1 and hephaestin in CAFs. Moreover, CAF-derived follistatin like protein 1(FSTL1) upregulates NCOA4 expression in NK cells via the DIP2A-P38 pathway, and NCOA4-mediated ferritinophagy is required for CAF-induced NK cell ferroptosis. In a human patient-derived organoid model, functional targeting of CAFs using a combination of deferoxamine and FSTL1-neutralizing antibody significantly alleviate CAF-induced NK cell ferroptosis and boost the cytotoxicity of NK cells against GC. This study demonstrates a novel mechanism of suppression of NK cell activity by CAFs in the TME and presents a potential therapeutic approach to augment the immune response against GC mediated by NK cells.


Assuntos
Antineoplásicos , Fibroblastos Associados a Câncer , Ferroptose , Proteínas Relacionadas à Folistatina , Neoplasias Gástricas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Proteínas Relacionadas à Folistatina/metabolismo , Neoplasias Gástricas/metabolismo , Ferro/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Antineoplásicos/farmacologia , Microambiente Tumoral
2.
Matrix Biol ; 115: 1-15, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423735

RESUMO

The mechanical microenvironment regulated by cancer-associated fibroblasts (CAFs) influence tumor progression. Chemotherapeutic interventions including 5-Fluorouracil (5-Fu) are commonly used for primary treatment of patients with advanced gastric cancer (GC), and the development of acquired resistance to 5-Fu limits the clinical efficacy of these chemotherapies. However, if and how the interplay between CAFs and the mechanical microenvironment regulates GC response to 5-Fu is poorly understood. In this study, we demonstrate that high-level expression of calponin 1(CNN1) in gastric CAFs predicts poor clinical outcomes of GC patients, especially for those treated with 5-Fu. CNN1 knockdown in CAFs improves the effectiveness of 5-Fu in reducing tumor growth in a mouse GC model and confers increased sensitivity to 5-Fu in a 3D culture system. Furthermore, CNN1 knockdown impairs CAF contraction and reduces matrix stiffness without affecting the expression of matrix proteins. Mechanistically, CNN1 interacts with PDZ and LIM Domain 7 (PDLIM7) and prevents its degradation by the E3 ubiquitin ligase NEDD4-1, which leads to activation of the ROCK1/MLC pathway. The increased matrix stiffness, in turn, contributes to 5-Fu resistance in GC cells by activating YAP. Taken together, our data reveal a critical role of the mechanical microenvironment in 5-Fu resistance, which is modulated by CNN1hi CAFs-mediated matrix stiffening, indicating that targeting CAFs may provide a novel option for overcoming drug resistance in GC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Gástricas , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Fluoruracila/farmacologia , Fluoruracila/metabolismo , Fluoruracila/uso terapêutico , Microambiente Tumoral
3.
Redox Biol ; 46: 102076, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34315112

RESUMO

Acquired resistance to tyrosine kinase inhibitors (TKIs) is the major obstacle to improve clinical efficacy in cancer patients. The epithelial-stromal interaction in tumor microenvironment influences cancer drug response to TKIs. Anlotinib is a novel oral multi-targeted TKI, and has recently been proven to be effective and safe for several tumors. However, if and how the epithelial-stromal interaction in tumor microenvironment affects anlotinib response in gastric cancer (GC) is not known. In this study, we found that anlotinib inhibited GC cells growth by inducing GC cells apoptosis and G2/M phase arrest in a dose- and time-dependent manner. Reactive oxygen species (ROS) mediated anlotinib-induced apoptosis in GC cells, while cancer-associated fibroblasts (CAFs) significantly suppressed anlotinib-induced apoptosis and ROS in GC cells. Increased BDNF that was derived from CAFs activated TrkB-Nrf2 signaling in GC cells, and reduced GC cells response to anlotinib. We identified secreted lactate from GC cells as the key molecule instructing CAFs to produce BDNF in a NF-κB-dependent manner. Additionally, functional targeting BDNF-TrkB pathway with neutralizing antibodies against BDNF and TrkB increased the sensitivity of GC cells towards anlotinib in human patient-derived organoid (PDO) model. Taken together, these results characterize a critical role of the epithelial-stroma interaction mediated by the lactate/BDNF/TrkB signaling in GC anlotinib resistance, and provide a novel option to overcome drug resistance.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neoplasias Gástricas , Fator Neurotrófico Derivado do Encéfalo/genética , Fibroblastos , Humanos , Indóis , Ácido Láctico , Quinolinas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Microambiente Tumoral
4.
Mol Ther Nucleic Acids ; 23: 1288-1303, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33717650

RESUMO

Tumor metastasis is a crucial impediment to the treatment of gastric cancer (GC), and the epithelial-to-mesenchymal transition (EMT) program plays a critical role for the initiation of GC metastasis. Thus, the aim of this study is to investigate the regulation of lnc-CTSLP4 in the EMT process during GC progression. We found that lnc-CTSLP4 was significantly downregulated in GC tumor tissues compared with adjacent non-tumor tissues, and its levels in GC tumor tissues were closely correlated with tumor local invasion, TNM stage, lymph node metastasis, and prognosis of GC patients. Loss- and gain-of-function assays indicated that lnc-CTSLP4 inhibited GC cell migration, invasion, and EMT in vitro, as well as peritoneal dissemination in vivo. Mechanistic analysis demonstrated that lnc-CTSLP4 could bind with Hsp90α/heterogeneous nuclear ribonucleoprotein AB (HNRNPAB) complex and recruit E3-ubiquitin ligase ZFP91 to induce the degradation of HNRNPAB, thus suppressing the transcriptional activation of Snail and ultimately reversing EMT of GC cells. Taken together, our results suggest that lnc-CTSLP4 is significantly downregulated in GC tumor tissues and inhibits metastatic potential of GC cells by attenuating HNRNPAB-dependent Snail transcription via interacting with Hsp90α and recruiting E3 ubiquitin ligase ZFP91, which shows that lnc-CTSLP4 could serve as a prognostic biomarker and therapeutic target for metastatic GC.

5.
FASEB J ; 35(4): e20649, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33715234

RESUMO

Adenosine triphosphate (ATP) in the tumor microenvironment serves a vital role during tumor progression. ATP synthase F1 ß subunit (ATP5B) is one of the most important subunits of ATP synthase and increases cellular ATP levels. ATP5B reportedly participates in carcinogenesis in several tumors. However, the regulatory mechanisms of ATP5B remain poorly understood in gastric cancer (GC). Here, we determined that high ATP5B expression in tumor tissues of GC is positively correlated with age, the tumor size, the TNM stage, lymph node metastasis, and patients' poor prognosis. The overexpression of ATP5B in GC cells elevated the cellular ATP content and promoted migration, invasion and proliferation. The levels of MMP2 expression, phosphorylated FAK, and phosphorylated AKT were increased after ATP5B overexpression in GC cells. Additionally, ATP5B overexpression increased the extracellular ATP level through the secretion of intracellular ATP and activated the FAK/AKT/MMP2 signaling pathway. ATP5B-induced downstream pathway activation was induced through the plasma membrane P2X7 receptor. Inhibitors of P2X7, FAK, AKT, and MMP2 suppressed the proliferative, migratory, and invasive capabilities of GC cells. In conclusion, our experiments indicate that ATP5B contributes to tumor progression of GC via FAK/AKT/MMP2 pathway. ATP5B, therefore, may be a biomarker of poor prognosis and a potential therapeutic target for GC.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metaloproteinase 2 da Matriz/genética , Camundongos , Pessoa de Meia-Idade , ATPases Mitocondriais Próton-Translocadoras/genética , Neoplasias Experimentais , Neoplasias Peritoneais/secundário , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Neoplasias Gástricas/patologia , Análise Serial de Tecidos , Regulação para Cima
6.
BMC Plant Biol ; 21(1): 4, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407147

RESUMO

BACKGROUND: Auxin is critical to plant growth and development, as well as stress responses. Small auxin-up RNA (SAUR) is the largest family of early auxin responsive genes in higher plants. However, the function of few SAUR genes is known owing to functional redundancy among the many family members. RESULTS: In this study, we conducted a phylogenetic analysis using protein sequences of 795 SAURs from Anthoceros angustus, Marchantia polymorpha, Physcomitrella patens, Selaginella moellendorffii, Ginkgo biloba, Gnetum montanum, Amborella trichopoda, Arabidopsis thaliana, Oryza sativa, Zea mays, Glycine max, Medicago truncatula and Setaria italica. The phylogenetic trees showed that the SAUR proteins could be divided into 10 clades and three subfamilies, and that SAUR proteins of three bryophyte species were only located in subfamily III, which suggested that they may be ancestral. From bryophyta to anthophyta, SAUR family have appeared very large expansion. The number of SAUR gene in Fabaceae species was considerably higher than that in other plants, which may be associated with independent whole genome duplication event in the Fabaceae lineages. The phylogenetic trees also showed that SAUR genes had expanded independently monocotyledons and dicotyledons in angiosperms. Conserved motif and protein structure prediction revealed that SAUR proteins were highly conserved among higher plants, and two leucine residues in motif I were observed in almost all SAUR proteins, which suggests the residues plays a critical role in the stability and function of SAUR proteins. Expression analysis of SAUR genes using publicly available RNA-seq data from rice and soybean indicated functional similarity of members in the same clade, which was also further confirmed by qRT-PCR. Summarization of SAUR functions also showed that SAUR functions were usually consistent within a subclade. CONCLUSIONS: This study provides insights into the evolution and function of the SAUR gene family from bryophyta to anthophyta, particularly in Fabaceae plants. Future investigation to understand the functions of SAUR family members should employ a clade as the study unit.


Assuntos
Ácidos Indolacéticos/metabolismo , Família Multigênica , Filogenia , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/genética , Plantas/genética , Estresse Fisiológico/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla
7.
J Cancer ; 12(1): 65-75, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391403

RESUMO

Background: Gastric cancer (GC) with peritoneal metastasis has an extremely poor prognosis. Paclitaxel (PTX) intraperitoneal infusion provides an effective treatment for these patients. However, GC patients with peritoneal metastasis who receiving PTX treatments tend to occur PTX-resistance accompany with more aggressive ascites and metastasis. How does this happen is still unknown. Here, we aimed to explore the mechanisms that mediate PTX-resistance and metastasis in GC with peritoneal metastasis. Methods: Ascites samples were collected before PTX infusion and after the relapse in 3 GC patients. To determine the expression of significantly changed proteins, we performed tandem mass tag (TMT) quantitative proteomics. Immunohistochemistry (IHC) staining and western blot were performed to confirm the expression of CDH11 in the PTX-resistant tissues and MKN45P-PR cells. Invasion and migration of GC cells were examined by in vitro transwell and wound healing assays and in vivo dissemination experiments. Results: CDH11 expression was downregulated in the relapsed PTX-resistant ascites, tissues and the PTX-resistant cell line MKN45P-PR. Inhibition of CDH11 expression promoted the invasion, migration and PTX resistance of MKN45P cells, while overexpression of CDH11 repressed these biological functions. Moreover, tumors disseminated in the mice peritoneal cavity induced by MKN45P-PR cells and shCDH11 cells displayed higher metastatic ability and resistance to PTX treatment. Conclusions: Our results reveal that CDH11 is inhibited in the relapsed PTX-resistant patients and the downregulated CDH11 expression promotes GC cell invasion, migration and PTX resistance. CDH11 may have the potential to serve as a predictable marker for the occurrence of PTX resistance in GC patients with peritoneal metastasis.

8.
Gastric Cancer ; 23(6): 974-987, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32388635

RESUMO

BACKGROUND: Increasing evidence indicates that angiogenesis plays an important role in tumor progression. The function of cathepsin L (CTSL), an endosomal proteolytic enzyme, in promoting tumor metastasis is well recognized. The mechanisms by which CTSL has promoted the angiogenesis of gastric cancer (GC), however, remains unclear. METHODS: The nuclear expression levels of CTSL were assessed in GC samples. The effects of CTSL on GC angiogenesis were determined by endothelial tube formation analysis, HUVEC migration assay, and chick embryo chorioallantoic membrane (CAM) assay. The involvement of the CDP/Cux/VEGF-D pathway was analyzed by angiogenesis antibody array, Western blot, co-immunoprecipitation (Co-IP) and dual-luciferase reporter assay. RESULTS: In this study, we found that the nuclear CTSL expression level in GC was significantly higher than that in adjacent nontumor gastric tissues and was a potential important clinical prognostic factor. Loss- and gain-of-function assays indicated that CTSL promotes the tubular formation and migration of HUVEC cells in vitro. The CAM assay also showed that CTSL promotes angiogenesis of GC in vivo. Mechanistic analysis demonstrated that CTSL can proteolytically process CDP/Cux and produce the physiologically relevant p110 isoform, which stably binds to VEGF-D and promotes the transcription of VEGF-D, thus contributing to the angiogenesis of GC. CONCLUSION: The findings of the present study suggested that CTSL plays a constructive role in the regulation of angiogenesis in human GC and could be a potential therapeutic target for GC.


Assuntos
Indutores da Angiogênese/metabolismo , Catepsina L/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Animais , Embrião de Galinha , Cistina Difosfato/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Fator D de Crescimento do Endotélio Vascular/metabolismo
9.
Oncogene ; 39(7): 1414-1428, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31659258

RESUMO

Gastric cancer (GC) is characterized by extensive local invasion, distant metastasis and poor prognosis. In most cases, GC progression is associated with aberrant expression of cytokines or activation of signaling cascades mediated by tumor-stroma interactions. However, the mechanisms by which these interactions contribute to GC progression are poorly understood. In this study, we find that IL-33 and its receptor ST2L are upregulated in the human GC and served as prognostic markers for poor survival of GC patients. In a co-culture model with GC cells and cancer-associated fibroblasts (CAFs), we further demonstrate that CAFs-derived IL-33 enhances the migration and invasion of GC cells by inducing the epithelial-mesenchymal transition (EMT) through activation of the ERK1/2-SP1-ZEB2 pathway in a ST2L-dependent manner. Furthermore, the secretion of IL-33 by CAFs can be induced by the proinflammatory cytokines TNF-α that is released by GC cells via TNFR2-NF-κB-IRF-1 pathway. Additionally, silencing of IL-33 expression in CAFs or ST2L expression in GC cells inhibits the peritoneal dissemination and metastatic potential of GC cells in nude mice. Taken together, these results characterize a critical role of the interaction between epithelial-stroma mediated by the TNF-α/IL-33/ST2L signaling in GC progression, and provide a rationale for targeting this pathway to treat GC metastasis.


Assuntos
Fibroblastos Associados a Câncer/patologia , Comunicação Celular , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Fator de Necrose Tumoral alfa/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo
10.
Gastric Cancer ; 22(5): 955-966, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30778797

RESUMO

BACKGROUND: Oncostatin M receptor (OSMR) is a member of the interleukin 6 (IL-6) receptor family that transduces signaling events of Oncostatin M (OSM). OSM-OSMR signaling plays a key role in inflammation and cancer progression. However, the role of OSM-OSMR in gastric cancer (GC) is still unknown. METHODS: OSMR expression in GC was determined by real-time PCR (RT-PCR), immunohistochemistry (IHC) and Western blot. The effects of OSM-OSMR on GC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and metastasis in vivo were examined. The pathways underlying OSM-OSMR signaling were explored by Western blot. Regulatory mechanism between SP1 and OSMR was explored in vitro. RESULTS: OSMR was highly expressed in GC tissues and its expression level was closely associated with age, T stage, Lauren classification, lymph node metastasis, TNM stage and worse prognosis of patients with GC. Knockdown of OSMR expression in GC cells significantly inhibited cell proliferation, migration, invasion, and EMT in vitro, as well as tumorigenesis and peritoneal metastasis in vivo induced by OSM. These effects mediated by OSM-OSMR were dependent on the activation of STAT3/FAK/Src signaling. SP1 could bind to the promoter region of human OSMR gene from - 255 to - 246 bp, and transcriptionally regulated OSMR overexpression in GC cells. CONCLUSIONS: OSM-OSMR contributes to GC progression through activating STAT3/FAK/Src signaling, and OSMR is transcriptionally activated by SP1.


Assuntos
Adenocarcinoma/secundário , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Subunidade beta de Receptor de Oncostatina M/metabolismo , Oncostatina M/farmacologia , Fator de Transcrição Sp1/metabolismo , Neoplasias Gástricas/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Feminino , Seguimentos , Humanos , Metástase Linfática , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Subunidade beta de Receptor de Oncostatina M/genética , Prognóstico , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Transcrição Sp1/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Int J Cancer ; 141(5): 998-1010, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28542982

RESUMO

Gastric cancer (GC) is one of the most frequent malignant tumors worldwide and is associated with high invasiveness, high metastasis and poor prognosis. Cancer-associated fibroblasts (CAFs), residing around tumor cells in tumor stroma, are important modifiers of tumor initiation and progression. However, the molecular mechanisms by which CAF's modulate tumor development have yet not to be characterized in GC. Here we performed tissue assay analyses identifying that Lumican, an extracellular matrix protein, is highly expressed in human gastric CAFs and its expression is positively associated with depth of invasion, lymph node metastasis, TNM stage and poor survival rate of GC. Functional studies revealed that integrin ß1-FAK signaling pathways mediate the promoting effect of Lumican on GC cell proliferation, migration and invasion in vitro. In accordance with these observations, in GC cells co-cultured with CAFs in which Lumican had been knocked down, decreased gastric tumor growth and metastasis in vivo was apparent. In summary, CAF-derived Lumican contributes to tumorigenesis and metastasis of GC by activating the integrin ß1-FAK signaling pathway.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Integrina beta1/metabolismo , Lumicana/metabolismo , Neoplasias Gástricas/patologia , Adulto , Idoso , Animais , Western Blotting , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Imunofluorescência , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Neoplasias Gástricas/metabolismo
12.
Oncotarget ; 8(13): 20741-20750, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28186964

RESUMO

Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in tumor stroma, are important modifiers of tumor progression. However, the molecular mechanisms underlying the tumor-promoting properties of CAFs in gastric cancer remain unclear. Here, we show that CAFs isolated from gastric cancer produce significant amounts of interleukin-6 (IL-6). CAFs enhances the migration and EMT of gastric cancer cells through the secretion of IL-6 that activates Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3) pathway in gastric cancer cells, while deprivation of IL-6 using a neutralizing antibody or inhibition of JAK/STAT3 pathway with specific inhibitor AG490 markedly attenuates these phenotypes in gastric cancer cells induced by CAFs. Moreover, silencing IL-6 expression in CAFs or inhibiting JAK2/STAT3 pathway in gastric cancer cells impairs tumor peritoneal metastasis induced by CAFs in vivo. Taken together, these results suggest that CAFs in the tumor microenvironment promote the progression of gastric cancer through IL-6/JAK2/STAT3 signaling, and IL-6 targeted therapy could be a complementary approach against gastric cancer by exerting their action on stromal fibroblasts.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Interleucina-6/metabolismo , Neoplasias Gástricas/patologia , Microambiente Tumoral/fisiologia , Animais , Western Blotting , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Xenoenxertos , Humanos , Janus Quinase 2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/patologia , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Gástricas/metabolismo
13.
Oncotarget ; 7(6): 7066-79, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26771235

RESUMO

Gastric cancer (GC) is one of the most common tumors worldwide and involves extensive local tumor invasion, metastasis, and poor prognosis. Understanding mechanisms regulating progression of GC is necessary for developing effective therapeutic strategies. Tissue transglutaminase-2 (TG2), a multifunctional member of the transglutaminase family, has been shown to be critical for tumor initiation and progression. However, how TG2 promotes the progression of GC is unknown. We report that TG2 was highly expressed in GC tissues and positively associated with depth of tumor invasion and late TNM stage. With gain- and loss-of-function approaches, we observed that TG2 promoted GC cell proliferation, migration, invasion, as well as tumorigenesis and peritoneal metastasis in vivo. These events were associated with the ERK1/2 pathway activation and an ERK1/2 inhibitor (U0126) inhibited cell proliferation, migration, and invasion induced by overexpression of TG2. In summary, TG2 contributes to tumorigenesis and progression of GC by activating the ERK1/2 signaling pathway and is a potential therapeutic target of metastatic gastric cancer.


Assuntos
Movimento Celular , Proliferação de Células , Proteínas de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Neoplasias Gástricas/patologia , Transglutaminases/metabolismo , Animais , Apoptose , Western Blotting , Estudos de Casos e Controles , Progressão da Doença , Feminino , Seguimentos , Proteínas de Ligação ao GTP/genética , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Proteína 2 Glutamina gama-Glutamiltransferase , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Taxa de Sobrevida , Transglutaminases/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...